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a b s t r a c t

Similarity query processing is becoming increasingly important in many applications such as data
cleaning, record linkage, Web search, and document analytics. In this paper we study how to provide
end-to-end similarity query support natively in a parallel database system. We discuss how to express
a similarity predicate in its query language, how to build indexes, how to answer similarity queries
(selections and joins) efficiently in the runtime engine, possibly using indexes, and how to optimize
similarity queries. One particular challenge is how to incorporate existing similarity join algorithms,
which often require a series of steps to achieve a high efficiency, including collecting token frequencies,
finding matching record id pairs, and reassembling result records based on id pairs. We present a
novel approach that uses existing runtime operators to implement such complex join algorithms
without reinventing the wheel; doing so positions the system to automatically benefit from future
improvements to those operators. The approach includes a technique to transform a similarity join
plan into an efficient operator-based physical plan during query optimization by using a template
expressed largely in the system’s user-level query language; this technique greatly simplifies the
specification of such a transformation rule. We use Apache AsterixDB, a parallel Big Data management
system, to illustrate and validate our techniques. We conduct an experimental study using several
large, real datasets on a parallel computing cluster to assess the similarity query support. We also
include experiments involving three other parallel systems and report the efficacy and performance
results.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Similarity queries compute answers satisfying matching con-
ditions that are not exact but approximate. The problem of
supporting similarity queries has become increasingly important
in many applications, including search, record linkage [1], data
cleaning [2], and social media analysis [3]. For instance, during a
live phone conversation with a client, a call center representative
might wish to immediately identify a product purchased by the
customer by typing in a serial number. The system should locate
the product even in the presence of typos in the search number.
A social media analyst might want to find user accounts that
share common hobbies or social friends. A medical researcher
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may want to search for papers with a title similar to a particular
article. In each of these examples, the query includes a matching
condition with a similarity function that is domain specific, such
as edit distance for a keyword or Jaccard for sets of hobbies.

There are two basic types of similarity queries. One is search,
or selection, which finds records similar to a given record. The
other is join, which computes pairs of records that are similar to
each other. There have been many studies on these two types
of queries. A plethora of data structures, partitioning schemes,
and algorithms have been developed to support similarity queries
efficiently on large datasets. When the computation is beyond
the limit of a single computer, there are also parallel solutions
that support queries across multiple nodes in a cluster. (See
Section 1.1 for an overview.) The techniques developed in the
last two decades have significantly improved the performance of
similarity queries and have enabled applications to support such
queries on millions or even billions of records.

Since in many applications data resides in a database, a natural
question is how to adopt these existing techniques on such a
database system to support similarity queries. One approach is to
use these techniques on top of the database. That is, we develop
an independent application layer that retrieves data from the
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database, and deploy these indexing structures and algorithms
in this applications to support similarity queries. One advantage
of this approach is that it has a lot of flexibility in the imple-
mentation. Meanwhile, it also has several major drawbacks. First,
the data essentially has two copies, one inside the database,
and one in the application. Second, additional effort is needed
to synchronize the data in the application with the data in the
database, in order to return the latest results to a user query.
Third, the internal capabilities of the database, including storage,
indexing, and query execution, are not fully utilized. Another
approach is to fully integrate these techniques inside a database,
so that all the abovementioned limitations can be overcome. In
particular, the data does not have to be copied in a separate layer,
and queries can be supposed on the data directly by utilizing the
built-in capabilities of the database system.

In this paper, we focus on the second approach, and study
how to support similarity queries end-to-end in a full, declarative
parallel data management system natively. By ‘‘end-to-end’’, we
mean the whole lifecycle of a query, including the language
support for similarity conditions, internal index structures, exe-
cution plans with or without an index, plan rewriting to optimize
execution, and so on. Achieving the end-to-end goal has several
challenges. First, as the notion of similarity in queries can be
domain specific, we need to support commonly used similarity
functions and let users provide their own customized functions.
Second, due to the complex logic of existing algorithms, we
need to consider how to support them using existing database
operators without ‘‘reinventing the wheel’’ (i.e., without intro-
ducing new, ad hoc operators). Third, we need to consider how
to leverage an existing query optimization framework to rewrite
similarity queries to achieve high performance.

In this paper, to develop and validate our approach, we use
Apache AsterixDB, an open-source parallel data management sys-
tem for semi-structured (NoSQL) data, as an example platform.
We make the following contributions:

(1) We show how to extend the existing query language of
a parallel database system to allow users to specify a similarity
query, either by using a system-provided function or specifying
their own logic as a user-defined function (Section 3).

(2) We show how to implement state-of-the-art techniques
using the existing operators in this parallel database system,
both for index-based and non-index-based plans (Section 4) and
for both search and join queries. Our solution not only allows
query plans to benefit from the built-in optimizations in those
operators but also automatically enjoys future improvements in
the operators.

(3) We show how to rewrite similarity queries in the existing
rule-based optimization framework inside AsterixDB (Section 5).
A plan for an ad hoc similarity join can be very complex. As an
example, a three-stage-join plan based on the technique in [4] can
involve up to 77 operators (Section 5.2). To allow the optimizer
to more easily transform such complex plans, we develop a novel
framework called ‘‘AQL+’’ that takes a two-step approach to
rewriting a plan. A major advantage of the framework is that
it allows the parallel database system to support queries with
more than one similarity join condition, making AsterixDB the
first parallel data management system (to our best knowledge)
to support similarity queries with multiple similarity joins.

(4) We present an empirical study using several large, real
datasets on a parallel cluster to evaluate the effects of these
techniques. We also present results of comparative experiments
with two other parallel systems to explore the relative efficacy
of AsterixDB’s support for parallel similarity queries on large
datasets when our technique has been incorporated (Section 6).

An earlier version of this paper appeared in [5]. This article
extends the earlier version by adding: (1) a thorough descrip-
tion of the AQL+ optimization framework and the inclusion and

an explanation of the actual template that transforms a simple
nested-loop similarity join into a three-stage similarity join; (2)
a more detailed description of several optimization techniques;
(3) a substantially extended experimental section including: (3a)
a re-execution of all the experiments from [5] using AsterixDB’s
new SQL++ language, (3b) the evaluation of multi-way similarity
joins on real datasets, (3c) the results of using two additional real
large datasets, (3d) doubling the scale of the speed-up and scale-
out experiments, (3e) an analysis of new findings from the new
scale experiments, (3f) empirical performance comparisons with
three other big data management systems; and (4) additional
diagrams and extended discussions throughout the paper.

1.1. Related work

There are various kinds of similarity queries on strings and
sets. Many algorithms (e.g., [6–8]) use a gram-based approach
for string similarity search. VGRAM [9] extends the approach
by introducing variable-length grams. To optimize string simi-
larity joins, filtering techniques are widely used. Length filtering
uses the length of a string to reduce the number of candi-
dates. An example algorithm is gram-count [10]. Prefix filter-
ing [11–20] utilizes the fact that two strings can be similar only
if they share some commonality in their prefixes. Based on this
fact, many algorithms have been proposed, such as AllPair [11],
PPJoin/PPJoin+ [12], ED-Join [16], MPJoin [14], QChunk [18],
VChunk [19], and Pivotal prefix [20]. Other algorithms have been
proposed such as M-Tree [21], trie-Join [22], and partition-based
set-similarity join [23].

There have been several evaluation studies of string/similarity
[24] and set-similarity joins [25]. There was also a recent survey
paper about string similarity queries [26]. The authors of [24]
found that AdaptJoin [17] and PPJoin+ [12] were best for Jac-
card similarity. Meanwhile, the authors of [25] concluded that
AllPair [11] was still competitive. The authors of [26] discussed
prefix-filtering techniques. Many of these algorithms assume that
the data to be searched or joined fits into main memory.

For parallel similarity joins, a number of studies have used
the MapReduce framework [4,27–31]. There was also a survey
that discussed parallel MapReduce similarity joins [32]. Ver-
nica et al. [4] proposed a three-stage algorithm in such a set-
ting. There have also been studies on integrating similarity joins
into database management systems [10,33–36]. Some of these
adopted the similarity join as a UDF [10] or expressed a similarity
join in a SQL expression [33]; others have introduced a relational
operator to support similarity joins [34–36].

Our focus in this paper is different, as it is about supporting
similarity queries in a general-purpose parallel database system
setting. We need to address various systems-oriented challenges
when adopting existing techniques in this context. A parallel
similarity query processing system called Dima [37] was also pro-
posed recently. Dima is an in-memory-based system, however,
and our focus is on handling big data that cannot fit into memory.
There are some other search systems and DBMSs that support
similarity queries, including Elasticsearch, Oracle, and Couchbase.
Elasticsearch is middleware and it focuses on search, not join.
Oracle supports edit distance via an extension package if a spe-
cific type of index is created. Couchbase supports edit distance
searches on NoSQL data in its new full-text search service, but
only via a separate full-text API (not its N1QL query language). In
contrast, AsterixDB provides a general class of similarity functions
that work for both select and join operations, and similarity
predicates can be part of a general declarative query along with
non-similarity predicates.
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Fig. 1. Example data of Amazon Review dataset (simplified).

2. Preliminaries

2.1. Similarity functions

A similarity measure is used to represent the degree of sim-
ilarity between two objects. An object can be a string or a bag
of elements. There are various types of similarity measures avail-
able depending on the objects that are being compared. In this
paper, we focus on two widely used classes of measures, namely
string-similarity functions and set-similarity functions.
String-Similarity Functions: One widely used string similarity
function is edit distance, also known as Levenshtein distance.
The edit distance between two strings r and s is the minimum
number of single-character operations (insertion, deletion, and
substitution) required to transform r to s. For instance, the edit
distance between ‘‘james’’ and ‘‘jamie’’ is 2, because the former
can be transformed to the latter by inserting ‘‘i’’ after ‘‘m’’ and
deleting ‘‘s’’. There are other string-similarity functions such as
Hamming distance and Jaro–winkler distance.
Set-Similarity Functions: These are used to represent the simi-
larity between two sets. There are many such functions, such as
Jaccard, dice, and cosine. In this paper, we focus on Jaccard simi-
larity, which is one of the most common set-similarity measures.
For two sets r and s, their Jaccard similarity is Jaccard(r, s) =
|r∩s|
|r∪s| . For example, the Jaccard similarity between r = {‘‘Good’’,
‘‘Product’’, ‘‘Value’’} and s = {‘‘Nice’’, ‘‘Product’’} is 1

4 . Such set-
similarity functions can also be utilized to measure the similarity
between two strings by tokenizing them (i.e., into n-grams or
words) and measuring the set similarity of their token multisets.
Dice and cosine values can be calculated similarly.
Similarity Search: Similarity search finds all objects in a collec-
tion that are similar to a given object based on a given similarity
metric. Let sim be a similarity function, and δ be a similarity
threshold. An object r from a collection R is similar to a query
object q if sim(r, q) ≥ δ.
Similarity Join: Joins find similar ⟨r, s⟩ pairs of objects from two
collections R and S, where r ∈ R, s ∈ S, and sim(r, s) ≥ δ.

2.2. Answering similarity queries

For similarity queries, using a brute-force, scan-based algo-
rithm is computationally expensive, so there have been many
studies in the literature on how to support similarity queries
more efficiently. One widely used method is the gram-based
approach, which utilizes the n-grams of a string. An n-gram of a
string r is a substring of r with length n. For instance, the 2-grams
of string ‘‘james’’ are {‘‘ja’’, ‘‘am’’, ‘‘me’’, ‘‘es’’}.

String-similarity queries can be answered by utilizing an n-
gram inverted index. For each gram g of the strings in a collection
R, there is an inverted list lg of the ids of the strings that include
this gram g . Fig. 2 shows the inverted lists for the 2-grams of the
username field of the little sample Amazon Review dataset in
Fig. 1.

We can answer a string-similarity query by computing the n-
grams of the query string and retrieving the inverted lists of these
grams. We then process the inverted lists to find all string ids that

Fig. 2. Inverted lists for 2-grams of the username field.

Fig. 3. Answering an edit-distance query for ‘‘q’’ = marla and T = 2.

occur at least T times, since a string r within edit distance k of
another string s must share at least T = |G(r)|−k×n grams with
s [38]. This problem is called the T -occurrence problem. Solving
the T -occurrence problem yields a set of candidate string ids.
The false positives are then removed in a final verification step
by fetching the strings of the candidate string ids and computing
their real similarities to the query. As an example, given a gram
length n = 2, an edit distance threshold k = 1, and a query string
q = ‘‘marla’’, Fig. 3 illustrates how to find the similar usernames
from the data in Fig. 1. We first compute the 2-grams of q as
{‘‘ma’’, ‘‘ar’’, ‘‘rl’’, ‘‘la’’} and retrieve the inverted lists of these
2-grams. We consider the records that appear at least T = 4−2×

1 = 2 times on these lists as candidates, which have review_ids 2,
3, and 5. Last, we compute the real similarity for these candidates,
and the review_id 5 is the final answer. Note that if the threshold
T ≤ 0, then the entire data collection needs to be scanned to
compute the results; this is called a corner case. In the above
example, if the threshold is 3, then T = 4 − 2 × 3 = −2, causing
a corner case.

2.3. Apache AsterixDB

Initiated in 2009, the AsterixDB [39] project integrated ideas
from three distinct areas – semi-structured data, parallel data-
bases, and data-intensive computing – to create an open-source
software platform that scales on large, shared-nothing commod-
ity computing clusters [40].

2.3.1. AsterixDB architecture
AsterixDB consists of several software layers as shown in

Fig. 4. The top-most layer provides a full, flexible data model
(ADM) and query languages (SQL++ [41] and AQL) for describing,
querying, and analyzing data. AQL was AsterixDB’s initial query
language; SQL++ is now the preferred language for users.

The next layer, a query compiler based on Algebricks [42], is
used for parallel query processing. This algebraic layer receives
a translated logical SQL++/AQL query plan from the upper layer
and performs rule-based optimizations. A rule can be assigned to
multiple rule sets. Based on the configuration of a rule set, each
rule can be applied repeatedly until no rule in the set can further
transform the plan. For logical plan transformation, there are cur-
rently 15 rule sets and 171 rules (including multiple assignments
of a rule to different rule sets). After logical optimization, Alge-
bricks selects physical operators for each logical operator in the
plan. For example, for a logical join operator, a hybrid-hash-join
or nested-loop-join can be chosen based on the join predicate.
After that, the physical optimization phase begins. During logical
and physical optimization, there are a number of rule sets that
are applied sequentially. There are 3 rule sets and 30 rules for
the physical optimization phase. Once the physical optimization
process is done, the Algebricks layer generates Hyracks jobs to be
executed on the Hyracks [43] layer.
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Fig. 4. AsterixDB architecture.

Fig. 5. An ADM type and dataset.

The Hyracks layer includes the storage facilities for datasets
that are stored and managed by AsterixDB as partitioned LSM-
based B+-trees with optional LSM-based secondary indexes [44].
AsterixDB translates a computation task into a directed-acyclic
graph (DAG) of operators and connectors and sends it to Hyracks
for execution. In Hyracks, operators consume partitions of input
data and produce partitions of output data. The output partitions
produced by operators are then repartitioned by connectors to
produce the input partitions for the next operator. An operator
has one or more activities (sub-steps or phases) and there may be
control dependencies between two activities on certain operators.
Using this information, one or more stages are created. A stage
includes a group of activities (an activity cluster) that can be
co-scheduled. Therefore, a job will be executed on a stage-by-
stage-basis. Since data is represented as tuples of bytes at this
level, Hyracks is a data-model agnostic layer.

2.3.2. AsterixDB data model
AsterixDB defines its own data model (ADM) [39] targeting

semi-structured data. ADM is a superset of JSON, with support for
bags, nested types, and a variety of primitive types. Fig. 5 shows
some example ADM DDL including the type definition for the
Amazon review dataset in Fig. 1. AmazonReviewType is defined
as an open type, which means that its instances must have all
the specified fields but may also contain extra fields that can vary
from instance to instance.

Each record in an AsterixDB dataset is identified by a unique
primary key, and records are hash-partitioned across the nodes
of a cluster based on their primary keys. Each record in a dataset
has to comply with its associated datatype. Fig. 5 also includes a
SQL++ statement for creating the Amazon review dataset. Each
partition is locally indexed by a primary key in an LSM B+-
tree, a.k.a. the primary index, and resides on its node’s local
storage. AsterixDB also supports secondary indexing, including

B+-tree, R-tree, and inverted index options; indexes are local,
i.e., they are partitioned in the same way as the primary index.
Like the primary index, each secondary index also adopts an LSM-
based structure. Further details of LSM-based index structures in
AsterixDB can be found in the AsterixDB storage management
paper [44].

3. Using similarity queries

In this section, we discuss the similarity measures supported
in AsterixDB and show how users can express similarity queries
in SQL++. We also show how users can specify indexes to expe-
dite query processing.

3.1. Supported similarity measures

AsterixDB currently supports two built-in similarity measures,
Jaccard and edit distance, to solve set-similarity and string
queries. Both measures can be processed with or without indexes.
Let us focus on edit distance first. This measure can be calcu-
lated on two strings. As an extension in AsterixDB, edit distance
can also be computed between two arrays of scalar values. For
example, the edit distance between [‘‘Better", ‘‘than’’, ‘‘I’’,
‘‘expected’’] and [‘‘Better’’, ‘‘than’’, ‘‘expected’’] is 1. This
generalization is possible since a character in a text string can
be viewed as an element in an array if we think of the string as
a collection of ordered characters.

The other supported measure, the Jaccard value, can be com-
puted on two arrays or multisets of elements. If a field type is
string, a user can use a tokenization function to first make an
array of elements from the string. For example, it is possible to
calculate the Jaccard similarity between two strings by tokenizing
each string into an array of words.

If a user wishes to use their own similarity measure, they can
create a user-defined function (UDF). A UDF can be expressed in
SQL++ or AQL (the two query languages supported by AsterixDB)
or implemented as an external Java class. If the desired UDF
can be expressed in SQL++ or AQL, the user can create such
a function using the following syntax and use it like a native
function.

create function similarity-cosine(x, y) {
. . . . . .

}

3.2. Expressing similarity queries

AsterixDB provides two ways to express a similarity query in
a SQL++ or AQL query, both illustrated by the example SQL++

queries in Fig. 6. These equivalent queries find the record pairs
from the Amazon review dataset that have similar summaries.
In Fig. 6(a) before the actual query, the similarity function and
threshold are defined with set statements. The query then uses
a similarity operator ∼=, which is syntactic sugar defined for
similarity functions. This similarity operator computes the sim-
ilarity between its two operands according to the simfunction
and simthreshold and returns the records that are similar.
The same query can also be written without using the similarity
operator. The similarity query in Fig. 6(b) uses a Jaccard function
named similarity_jaccard(), and this query is equivalent to
that in Fig. 6(a). The first syntax can be easier to use because the
simfunction and simthreshold also have the default settings
and a user is not required to provide the two set statements. In
addition, the user does not need to remember the exact function
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Fig. 6. SQL++ join on the summary field of the Amazon review dataset using
Jaccard similarity.

name with that syntax. Also, if the user wants to change the
similarity function, they only need to change the set statements
without changing the query itself. During query parsing and
compilation, it is easy for the optimizer to replace this syntactic
sugar and generate a desired optimized plan. On the other hand,
the second form gives the user more direct control. There are a
few variations of similarity functions in AsterixDB, e.g., one that
can do early termination during the evaluation. A user can freely
choose any of them.

3.3. Using indexes

Without an index, AsterixDB scans the whole dataset in the
query to compute the result for the given query. To expedite
query execution, AsterixDB supports two kinds of inverted in-
dexes to support the two similarity measures efficiently.

The first index type, called keyword index, uses the elements
of a given multiset as keys and maps those keys to their cor-
responding primary ids. For example, it is possible to tokenize
a string and use each token as a key. This index is suitable
for Jaccard similarity. The two queries in Fig. 6 could utilize a
keyword index on the summary field. A keyword index can be
created using the following DDL statement, where summaryidx
is the index name:

create index summaryidx on AmazonReview(summary)
type keyword;

The second index type is called the n-gram index and is
suitable for edit distance. An n-gram index uses the extracted
n-grams of a string as the keys and maps those keys to their
corresponding primary ids. For example, we can use the following
DDL statement to create a 2-gram index on the reviewerName
field:

create index reviewernameidx on AmazonReview(reviewerName)
type ngram(2);

4. Executing similarity queries

In this section, we explain how similarity queries are internally
executed in AsterixDB. First, we describe the internal structure of
the inverted index. After that, we describe the execution flow for
a similarity query in the presence of an index and then describe
the execution flow in the case where no index is available.

Fig. 7. The structure of an inverted index.

4.1. Inverted index

An inverted index in AsterixDB is an LSM-based secondary
index that consists of a mutable in-memory component and mul-
tiple immutable on-disk components, as illustrated in Fig. 7. This
design choice was made to support high-frequency insertions,
as LSM-based indexes amortize the cost of writes by consolidat-
ing updates in memory before writing them to disk [44]. The
in-memory component consists of two B+-trees, one for the in-
memory inverted index and one to store the primary keys of
deleted records. On-disk components are immutable, so Aster-
ixDB denotes the deleted records of the on-disk components
using this B+-tree instead of deleting them from the inverted
index itself. This design choice also implies that primary keys
obtained from the inverted index may have already been deleted,
so they need to be verified by checking their existence in the
deleted-key B+-tree. An in-memory index component grows with
inserted/deleted records until the memory budget allocated for
the component is exhausted. It is then flushed to disk as a new
immutable on-disk component. The multiple index components
on disk must be searched besides the in-memory component
during a given index-search operation. To mitigate this, AsterixDB
periodically merges on-disk components based on a configurable
merge policy.

To improve its search performance, AsterixDB employs a
length-based technique to partition the inverted index. This tech-
nique is useful since it allows the use of length filtering prior
to a search, which eliminates records that are not similar based
on the length required for the similarity threshold of a query.
We use the number of tokens in the given field as the length.
Fig. 8(a) shows the details of an in-memory inverted index. The
secondary key field is first tokenized based on the type of the
index (n-gram or keyword), and each token is inserted into the
in-memory inverted index along with the length of the secondary
key field and the primary key of the record. The in-memory index
component is a B+-tree with keys consisting of triples. Each triple
contains ⟨token, length, primary key⟩. For example, in Fig. 8(a),
the leftmost entry is ⟨ai, 5, 104⟩. Its secondary key token is ai
and the number of tokens for the given field is 5. The triple also
tells us that this entry comes from the record whose primary key
is 104. Once the in-memory index is flushed to disk, it becomes
immutable, and it is finalized by merging the primary keys with
the same token and length into a sorted list in the inverted list
file and using the resulting ⟨token, length, inverted list pointer⟩
triples as B+-tree keys as shown in Fig. 8(b). The pointer there
indicates the starting offset of the associated list of primary keys
for the given token and length pair.
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Fig. 8. An example instance of an n-gram inverted LSM index.

Fig. 9. A similarity-selection query.

Fig. 10. Parallel execution of a similarity-selection query.

4.2. Executing similarity selections

We first present the execution strategy that AsterixDB uses
for selection queries. We use the example query in Fig. 9 to
explain the execution flow; this SQL++ query computes the
edit distance between a field title of a dataset called Red-
dit and a constant search key good competitions where the
edit-distance-threshold is 2.

4.2.1. Index-based search execution
When running the above query on a cluster with multiple

nodes, the query coordinator (a.k.a. cluster controller) sends a
request containing the constant search key (C) to each partici-
pating node (a.k.a. node controller). Fig. 10 illustrates how such a
similarity-selection query is executed using a secondary inverted
index on a 3-node cluster. In the figure, C is good competitions
and V refers to the title field in Fig. 9. Each cluster node con-
tains a partitioned primary index and a local inverted index. That
is, the contents of each inverted index are generated from the
local primary index. Thus, the nodes do not need to communicate
with each other to execute a selection query.

If an index is available, AsterixDB runs an index-based selec-
tion plan at each node. It first gives the constant value (C) to the
secondary inverted index. The secondary-inverted-index search
generates ⟨Secondary Key, Primary Key⟩ pairs that satisfy the T -
occurrence condition, which may include false positives. It then
looks up these primary keys in the primary index to fetch their
corresponding records. The primary keys are sorted prior to this
lookup to increase the chance of page cache hits in the buffer.
After fetching the actual field value from the primary index, a
SELECT operator is applied to remove false positives and generate
the final results. If the similarity condition is selective enough,
such an index-based search plan can be much more efficient than
the non-index-based plan that uses DATASET-SCAN and SELECT
operators in the absence of an index. Once the local results are
generated at each node, they are sent to the coordinator to be
combined into the final query result.

To process a similarity-selection query, the SQL++ compiler
first generates a simple non-index-based selection plan (the left

Fig. 11. Similarity-selection query plans.

Fig. 12. A similarity-join query.

part of Fig. 11) from a user query. The optimizer then transforms
the initial plan into an index-based selection plan if there is an
applicable index during the logical optimization process. We will
discuss this rewriting process further in Section 5.1.

4.2.2. Non-index-based search execution
Similar to index-based execution, when there are multiple

nodes, the coordinator sends a request containing the search key
C to all the nodes. At each node, as there is no index on the field in
the given similarity condition, AsterixDB scans the primary index,
fetches all records, and verifies the similarity condition on the
given field for each record. The left part of Fig. 11 depicts this
process. Finally, the results will be returned to the coordinator.

4.3. Executing similarity joins

A similarity join operator has two branches as its input. We
call the first one the outer branch and the second one the
inner branch. For example, in Fig. 12, the SQL++ alias ar refers
to the outer branch and r refers to the inner branch. This query
fetches three fields from each dataset based on a Jaccard join
condition with a threshold of 0.5.

4.3.1. Index-based join execution
Similar to the similarity-selection case, where the search pred-

icate value was broadcast to all nodes, in the similarity-join case,
the records coming from the outer join branch of each node are
broadcast to all nodes. Fig. 13 depicts how a similarity-join query
is executed using a secondary inverted index on a 3-node cluster.

The coordinator first sends the query execution request to
each participating node. Each node of an outer-branch partition
scans its portion of the outer-branch data. While doing so, it
broadcasts the resulting records to all nodes with a partition
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Fig. 13. Parallel execution of a similarity-join query.

Fig. 14. A similarity-join query plan.

of the inner branch’s dataset. This replicates all records of the
outer-branch on each node, which then perform a secondary-
index search. Each node with an index-side partition uses the
incoming outer-branch records (as well as its local ones) to search
its local inverted index. Once each secondary-index partition has
processed all the records from the outer branch, the resulting
primary keys from the search will be fed into the inner dataset’s
primary index and a primary-index search will be conducted. As
discussed before, these primary search keys are sorted before the
primary-index search to increase the chance of page cache hits. As
before, we need to remove false positives from the index-based
subplan using a SELECT operator based on the original similarity
condition, which is taken from the JOIN operator. The right side
of Fig. 14 depicts this process. Finally, the results are sent to the
coordinator to be combined.

4.3.2. Non-index-based join execution
When there is no index, a simple nested-loop join could be

performed for a similarity join query. The outer branch would
feed the predicate from each record to the inner branch. The com-
plexity of this solution would be quadratic. To avoid such a costly
nested-loop join, we instead adopt a three-stage-similarity-join
algorithm [4] that we review here for ad hoc similarity join
processing in AsterixDB.

The three-stage algorithm uses a prefix-filtering method, so
a global token order needs to be computed to generate a prefix
for each field value. This global token order can be arbitrary;
we choose the increasing token-frequency order, which tends to
generate fewer candidate pairs [4]. The first stage computes this
global token order by counting the frequency of each token in the
tokenized data and sorting the tokens based on their frequencies.
In the second stage, the algorithm computes a short prefix subset
for each set based on the global token order produced in the
first stage. The record id and (only) the join attribute of each
record are then replicated and repartitioned by hashing on these
prefix tokens. After the repartitioning step, candidate pairs are
generated by grouping the pairs by their ids, and the similarity is
computed for each pair to filter out the dissimilar ones. This stage
produces only similar record id pairs. Finally, the third stage of

Fig. 15. Three-stage set-similarity algorithm expressed in AQL for a self join on
the Amazon Review dataset using Jaccard similarity with a threshold of 0.5.

the algorithm rescans the inputs to fetch the rest of the query’s
desired record fields for these id pairs.

To apply this three-stage algorithm in AsterixDB, rather than
implementing new query operators and complex query plans, we
chose to describe the algorithm by using existing AQL constructs
such as for, let, group by, and order by since this approach
would be potentially more extendable in the future. In addition,
if/as we improve AsterixDB’s existing operators, we would not
need to modify the AQL description to utilize the improved op-
erators. For example, if a new sort algorithm becomes available
for the sort that generates a global token order, its benefit will be
applied without any alteration of the AQL. Fig. 15 shows an AQL
query that captures the three stages for a self-similarity join on
the summary field of the Amazon Review dataset using Jaccard
similarity with a threshold. Note how each step is implemented
using basic AQL constructs and functions. We now discuss the
details of these three stages.

Stage 1: Token Ordering is expressed in lines 11–18 of Fig. 15.
In this subquery, we iterate over the records in the dataset. For
each record, we retrieve the tokens in the summary field and
count the number of occurrences of each token using a group-
by clause. To expedite this calculation, we use a compiler hint in
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line 15 that suggests using hash-based aggregation instead of the
default sort-based aggregation for the group-by statement since
the order of tokens at this particular step is not meaningful. Fi-
nally, we order the tokens based on their count using an order-by
clause. The same subquery is repeated later, in lines 30–37, in the
context of the second dataset. During optimization, the optimizer
will detect this common subquery and execute the subquery only
once by using a replicate operator to send the results to both
outer plans. More details can be found in Section 5.4.2.

Stage 2: Record ID (RID)-Pair Generation is expressed in lines
5–50. We scan the dataset in line 6 and then retrieve each token
from the summary field. We order the tokens by the rank com-
puted in the first stage (lines 12–23) by joining the set of tokens
in one summary with the set of ranked tokens. We use a hint in
line 19 that advises the compiler to use a broadcast join operator
to broadcast the ranked-tokens. Next, we order the join results by
rank, stored in the variable $i. We then extract the prefix tokens
in line 22 and use the prefix-len-jaccard() built-in function
to compute the length of the prefix for Jaccard similarity with a
threshold of 0.5. The built-in subset-collection() function
extracts the prefix subset of the tokens. The same process of
tokenizing, ordering the tokens, and extracting the prefix tokens
is done in lines 25–42 for the second dataset. We then join
the two streams on their prefix tokens in line 44, and compute
and verify the similarity of each joined pair using the built-in
similarity-jaccard() function. Since a pair of records can
share more than one token in their prefixes, duplicate pairs can
be produced, and they are eliminated by using a group-by clause
in line 47.

Stage 3: Record Join is expressed in lines 1–4 and 51–54, which
consist of two joins. The first join adds the record information
for the first RID of each RID pair, while the second join adds the
record information for the second.

The logical query plan resulting from this large AQL query is
shown in Fig. 16. Hash repartition in the figure means that
a tuple will be repartitioned to a corresponding node based on
its hashed value. Sort merge repartitioning on a node merges
incoming tuples based on their sort field values. To transform a
logical query plan generated from a user’s SQL++ or AQL query
into a similarity join query to the three-stage-similarity query
plan similar to the explicit AQL in Fig. 15, we developed a new
framework called AQL+, which will be discussed in Section 5.2.

5. Optimizing similarity queries

In this section, we discuss how the AsterixDB query processor
optimizes SQL++ (or AQL) similarity queries and we describe the
AQL+ framework in more detail.

5.1. Rewriting a similarity query

AsterixDB uses rule-based optimization approach [42] as de-
scribed in Section 2.3.1. An initial logical plan is constructed
from a given query, and each optimization rule is tried on this
plan. If a rule is applicable, the plan is transformed. A logical
plan involving a dataset always starts with a PRIMARY-INDEX-
SCAN operator, followed by a SELECT operator if there are one
or more conditions. For similarity queries, a non-index similarity
query plan is constructed first, and an index-based transforma-
tion or a three-stage-similarity join can be introduced during the
optimization.

Fig. 16. A plan of a three-stage-similarity join query.

Fig. 17. Index-function compatibility table.

5.1.1. Rewriting a similarity-selection query
Fig. 11 from Section 4 shows how a similarity-selection query

is optimized to use an index. The left-hand side shows the original
scan-based plan, and the right-hand side shows the optimized
plan. Based on a SELECT operator with a similarity condition,
the optimizer tries to replace the PRIMARY-INDEX-SCAN with a
secondary-index-based search plan.

To rewrite a similarity-selection query, the optimizer first
matches an operator pattern consisting of a pipeline with a SE-
LECT operator and a PRIMARY-INDEX-SCAN operator. Next, it
analyzes the condition of the given SELECT operator to see if it
contains a similarity condition and if one of its arguments is a
constant. If so, it determines whether the non-constant argument
originates from the PRIMARY-INDEX-SCAN operator and whether
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Fig. 18. An optimized similarity-join query plan with the corner case.

the corresponding dataset has a secondary index on a field vari-
able V . For each secondary index on V , the optimizer checks
an index-function-compatibility table (Fig. 17) to determine its
applicability. For example, an n-gram index can be utilized for
the edit_distance() function. The final SELECT operator in the
figure filters out false positives.

Corner cases: Recall that for queries using edit distance, the
lower bound on the number of common q-grams (or tokens) may
become zero or negative. For such a corner case, the optimizer
must revert to a scan-based plan even if an index is available since
an index cannot be used for non-positive T -occurrence values. For
selection queries, the optimizer can foresee such cases at compile
time when applying the corresponding index-rewrite rule by an-
alyzing the constant argument in the similarity condition. When
detecting a corner case, it simply stops rewriting the plan. Note
that no such corner cases are possible for similarity queries based
on Jaccard, because if two sets have no elements in common,
then they can never reach a Jaccard similarity greater than 0.
In contrast, two strings could be within a certain (large) edit
distance even if the n-gram sets of the (short) strings have no
common elements.

5.1.2. Rewriting a similarity-join query
The basic rewriting of a similarity-join query using an index

is shown in Fig. 14 from Section 4. The optimized query plan
on the right-hand side uses an index-nested-loop join strategy.
Similar to the rewrite for selection queries, the optimizer replaces
the PRIMARY-INDEX-SCAN of the inner branch with a secondary-
index search followed by a primary-index search. Thus, it is
required that the inner branch of the join is a PRIMARY-INDEX-
SCAN, while the outer branch could be an arbitrary operator sub-
tree (shown simply as Subtree in the figure). In the optimized
plan, the outer branch feeds into the SECONDARY-INDEX-SEARCH
operator, i.e., every record from Subtree will be used as a search
key to the secondary index. As in the similarity-selection case,
the optimizer needs to remove false positives from the index-
based subplan using a SELECT operator based on the original
similarity condition, which is taken from the JOIN operator. No-
tice the broadcast connection between the outer subtree and the
secondary-index search. This connection tells the Subtree to
broadcast its output stream’s records to all of the inner dataset’s
secondary-index partitions.

The optimizer first matches the join operator’s required pat-
tern, which is a PRIMARY-INDEX-SCAN in the inner branch, since
this operator fully scans the dataset rather than using a secondary
index on some other condition. Also, the optimizer checks the
inner branch since it considers using a secondary index only

Fig. 19. Number of operators for a nested-loop join and three-stage-similarity
join plan for the same query.

from the inner branch, not from the outer branch. Next, it an-
alyzes the join condition to make sure the similarity function has
two non-constant arguments and checks if an argument of the
similarity condition is produced by the PRIMARY-INDEX-SCAN
operator in the inner branch, and whether the corresponding
inner dataset has an applicable secondary index to support the re-
quired similarity lookups. The optimizer then consults the index
compatibility matrix to decide whether it can rewrite the query
using an index.

Corner cases: For string-similarity joins using edit distance,
we must modify the basic index-nested-loop join plan in Fig. 14
to handle corner cases. Unlike selection queries, where the
secondary-index search key is a constant, the secondary-index
search keys for an index-nested-loop join are produced by the
outer branch (Subtree). Join corner cases must, therefore, be
dealt with at the query runtime, as opposed to the query compile
time as for selection queries. Fig. 18 shows the modified index-
nested-loop plan for handling corner cases for edit distance.
The main difference lies in separating the records produced by
the outer subtree into two sets, one containing non-corner-
case records (T > 0), and one containing corner-case records
(T ≤ 0). We do this by using a REPLICATE operator above the
outer subtree, followed by SELECT operators on each of its two
outputs to filter out the corner-case and non-corner-case records,
respectively. As before, the non-corner-case records are fed into
the secondary-to-primary index plan. The corner-case records
participate in a non-index nested-loop join plan. The final query
answer is the union of the results of those two joins.

5.2. AQL+ framework

As discussed in Section 4.3.2, for non-index-based similarity
joins, the optimizer needs to transform a nested-loop-join plan
generated from a user’s query into a three-stage join plan to
accelerate similarity-join-query execution. A challenge is that,
unlike the index-nested-loop-join optimization that adds or re-
places a few operators from a nested-loop join plan, a three-
stage-similarity join plan contains a large number of operators as
illustrated by the AQL query in Fig. 15. Fig. 19 shows the number
of operators in a three-stage-similarity join.

Due to the complexity of the tree-stage-join query plan, it
would be rather difficult to build and maintain an optimization
rule that manually constructs the DAG of operators that transform
a simple nested-loop join plan into a three-stage join plan. In-
stead, we developed a novel rewrite framework called AQL+ that
converts a simple logical plan generated from a user’s similarity-
join query into a three-stage join plan. The flow of the AQL+
framework is depicted in Fig. 20. The essential part of the AQL+
framework is the use of an AQL+ query template to express so-
phisticated query expressions, integrate the information from the
incoming logical plan into it, and finally transform the plan during
the optimization process. This way the optimizer does not need
to have a complex rule that manually translates a simple nested-
loop-join plan into a three-stage-similarity-join plan. What we
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Fig. 20. Execution of a similarity-join query using AQL+.

Table 1
AQL+ extensions (to AQL).
Extension Symbol Functionality

Meta Variable $$ Refer to a variable in the plan
Meta Clause ## Refer to an operator in the plan
Join Clause join, loj Express an explicit inner join or left-outer join

need instead is an AQL+ query template that expresses the three-
stage-similarity join and for the AQL+ framework to combine the
incoming plan with the query template.

When the SQL++ (or AQL) optimizer receives a logical
similarity-join plan in AQL+, it extracts the information from
the plan and integrates it with an AQL+ query template that
expresses the three-stage-similarity join. The generated AQL+
query is then parsed and compiled again using the AQL+ parser
and translator since the generated query itself is also a query. The
result of this process is a transformed logical plan. The resulting
plan is then processed by the rest of the query plan optimization
process.

To combine the information from an incoming logical plan
and the three-stage-similarity-join AQL query template, we need
ways to refer to relevant portions of the surrounding logical
plan from within the AQL+ query template. Therefore, the AQL+
framework consists of a few AQL language extensions and the
compilation of these language extensions during the optimization
process. As a result, the AQL+ language is a superset of AQL, the
first AsterixDB query language. (Note that we developed AQL+
when AQL was the primary language of AsterixDB, so AQL+ was
based on AQL. We later adopted SQL++ in AsterixDB and SQL++

is now mainly used. However, the differences between SQL++

and AQL do not affect the AQL+ framework since the AQL+
framework works on the logical plan level.) The AQL+ language
has three AQL extensions as shown in Table 1: Meta Variable
(denoted as $$), Meta Clause (##), and Explicit Join (join). We

Fig. 21. Three-stage-similarity join algorithm expressed in AQL+.

use these extensions to refer to the logical variables and operators
in the incoming logical plan during the optimization process, as
the AQL+ transformation of a given plan happens during the
optimization process. Note that the optimizer sees only the logical
plan and physical plan, not the original query. Since AQL itself
does not have an explicit join clause, AQL+ adds one in order
to express a join of two branches. We use meta-variables to
refer to the primary keys of the input records or variables in
the similarity predicate. The usage of meta-clauses is to refer to
the inputs of the AQL query and to refer to logical constructs
that cannot be directly specified in AQL, such as operators in the
plan. In this way, any AQL+ template can be combined with any
join input branches, where the inputs can be from any kinds of
subplans made up of other algebraic operators. In addition, to
support various types of data, similarity functions, and thresholds,
the similarity-join rule template uses placeholders that are parts
of the AQL+ query and are unknown until runtime. These are
used for data types, similarity-specific functions, or values. For
example, a SIMILARITY placeholder is used for built-in AQL
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Fig. 22. An example query and the corresponding logical plan that AQL+ template receives.

functions, and a THRESHOLD placeholder is used for numerical
similarity values.

Specifically, for the three-stage-similarity join, the optimizer
needs to identify a similarity JOIN operator that contains a Jac-
card similarity join and its threshold. It also needs to get the
information about the two branches of this JOIN operator. Using
this information, the logical plan fed into the AQL+ template can
be transformed into the equivalent three-stage-similarity-join
plan. Again, rather than doing this transformation by introducing
operators by hand, we rely on the existing compilation path to
generate a revised plan. This process is depicted in Fig. 20; the
details of this optimization flow will be discussed in the next
subsection. (See Table 1.)

The optimizer uses the AQL+ three-stage-similarity-join query
template shown in Fig. 21 to transform the incoming user query
during the rule-rewrite phase. In this way, the simple user-
written query of Fig. 6(a) can be transformed into the query of
Fig. 15 during the optimization process. The details of this AQL+
template are as follows. (We mostly focus on the AQL+ constructs
here.)

Stage 1: Token Ordering. This stage is expressed in lines 14–
21 of Fig. 21. The first meta-clause ##RIGHT_3 refers to the left
input operator of the given join. Since the same branch can be
used several times in each stage of the three-stage-similarity-
join, if there are dependencies between the reused branches, deep
copies of the given branch will be created. The suffix _3 here
denotes that this is the third copy of the given branch. In the
next line, $id is assigned to the primary key of the left branch,
which is denoted by a meta-variable, $$RIGHTPK_3. The suffix _3
means the third copy of the branch as described. TOKENIZER is a
template placeholder that will be replaced by an actual tokenizer
function. For example, the string tokenizer will be used for a
string field. Note that if $$RIGHT_3 is an array or a multiset, no
tokenizer will be added.

Stage 2: Record ID (RID)-Pair Generation. This stage is ex-
pressed in lines 6–51. This stage starts with a join meta-clause.
This meta-clause has three arguments, and each argument is

separated by a comma. The first argument is the left input branch
of the join. The second argument is the right input branch of the
join. The third argument describes the join condition. Since AQL
does not have an explicit join clause, the join meta-clause in
AQL+ provides a join expression that can be directly translated
into a logical JOIN operator. In this join, the left branch is ex-
pressed in lines 8–27. Lines 29–50 denote the right branch of the
join meta-clause. Line 51 of the template denotes the join con-
dition itself. Specifically, the left branch starts with ##RIGHT_1,
which means the first copy of the branch. In the next line, tokens
will be generated from the right variable of the original JOIN
operator. In line 25, the prefix tokens for the right branch are
calculated. Here, PREFIX_LEN denotes the function that calcu-
lates the prefix length based on the similarity type and the
threshold. THRESHOLD contains the similarity threshold. In line
46, the prefix length for the left side is calculated. This calculation
is different from that of the right branch, as a token that is in the
right branch may not exist in the left branch. This calculation is
needed since the template will be applied for both R-S joins and
self-joins (R-R). The join condition is in line 51.

Stage 3: Record Join. This stage, which fetches the fields for
similar records for the final result, is expressed in lines 1–5
and 56–57, each of which consists of two join meta-clauses.
The first join meta-clause adds the record information for the
right branch and the second join meta-clause adds the record
information for the left branch. The conditions for the two joins
are in lines 56–57.

To apply this AQL+ template to transform a nested-loop-
similarity-join plan into the three-stage-similarity-join plan, some
preparation must be done. All meta-variables, meta-clauses, and
placeholders need to be replaced by actual operators, variables,
and logical JOIN operators in the three-stage-similarity-join op-
timization rule. For example, in the AQL+ template, the primary
key of each branch are referred using ##RIGHTPK and ##LEFTPK
variables. These meta-variables are replaced with the actual pri-
mary keys in that optimizer rule. Fig. 22 shows an example
similarity-join query and its logical plan including the AQL+
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Fig. 23. Rewriting a multi-way-similarity-join plan on four datasets.

constructs used in the AQL+ template. We can see that the
top-most operators in both join branches form meta-clauses.
Also, the primary keys from the datasets in both branches are
regarded as meta-variables. The variables used in the similarity-
join condition are also meta-variables in the plan. These AQL+
constructs appear in the AQL+ template in Fig. 21. For example,
the ##LEFT meta-clause is used in line 3.

In addition to two-way similarity joins, the AQL+ framework
can be applied to transform multi-way-similarity join plans as
well because the optimizer can transform a logical plan itera-
tively. Similar to non-similarity-join cases, multi-way-similarity
joins can be transformed sequentially. For instance, Fig. 23 shows
a similarity-join plan involving four datasets. The join between
the first two datasets, R and S, has already been transformed into
a three-stage-similarity join plan. This branch will act as the outer
branch when the optimizer processes the next JOIN operator on
the third dataset T .

It is worth noting that AQL+ is a general extension framework,
not only for similarity queries, that in principle can be used
to support other transformations expressed via AQL during the
compilation process. (This was part of the original vision for
AQL+.)

5.3. The optimization rule for similarity queries

As discussed in Section 2.3.1, the optimization process in
AsterixDB is rule-based. Once the Algebricks layer receives a
compiled plan from a SQL++/AQL query, it optimizes the plan
both logically and physically. It first optimizes the given plan
logically using several rule sets.

To apply the similarity-query optimization framework to the
current optimization path, we created a new rule set for the
AQL+ framework and similarity queries as was shown in Fig. 20.
The rule set includes a similarity join rule (SJR) along with a
handful of other rules that need to be applied after SJR is applied.
As described earlier, the main functionality of AQL+ is a transfor-
mation using a complex AQL+ template to re-generate a logical
plan while maintaining the current surrounding plan as part of
the new plan. SJR first analyzes the conditions of a JOIN operator.
If its condition includes a similarity predicate, it applies the AQL+
template to the plan to generate an AQL+ query. It then compiles
the query into a new logical Algebricks plan. During this process,
all meta-variables, meta-clauses, and placeholders are replaced
by actual variables, operators, and logical JOIN operators. At this
point, some parts of the overall query plan will have already
been optimized if they belonged to the original incoming plan.
However, most parts of the plan will not have been optimized
yet, as the three-phase plan has just been compiled and has
not gone through the optimization process before the application
of the SJR rule set. Therefore, the newly generated plan needs

Fig. 24. Surrogate index-nested-loop-join plan.

to go through some of the earlier optimization rules again to
ensure that those rules have a chance to process all of the newly
added plan fragment’s constructs. Note that this re-application
process is not necessary for non-similarity queries since the plan
generated for a non-similarity query is not touched by the SJR rule
set. Therefore, we ensure that the similarity-join rule set is only
applied to similarity-join queries. A benefit of this approach is
that the optimization steps for similarity queries can be executed
without interfering with those for non-similarity queries; this
approach also gives the newly generated similarity-query plan
a chance to reach the same level of transformation once the
similarity rule set has finished its work.

5.4. Improvements

We now discuss two improvements that we employ in sim-
ilarity query processing that could be applied to general query
processing as well.

5.4.1. Surrogate index-nested-loop-join
A general drawback of an index-nested-loop join using a local

secondary index is the need to broadcast the outer side’s data
to all secondary-index partitions, as explained in Section 4. For
example, during the execution of the query in Fig. 12, the outer
side needs to broadcast the join key field summary as well as
the reviewer_id and id fields. If there were more fields in the
return clause, the broadcast cost would increase as well. This
broadcast step is a consequence of the co-partitioning of each
secondary index with its primary index. Another issue is that
a secondary-inverted-index search can generate multiple pairs
of results for the same primary key, as there can be multiple
entries of secondary keys for the same primary key. Thus, we
would like to reduce the cost of the sorting step between the
secondary-index search and primary-index search. We reduce
this cost by only sending the similarity-related secondary-key
fields together with a compact surrogate for each outer-side
record, and then later we use the surrogates to obtain the sur-
viving original records. This approach is reminiscent of semi-join
optimization in distributed databases [45]. In AsterixDB, we use
the primary key of a dataset as a surrogate.

Fig. 24 shows a surrogate-based index-nested-loop-similarity
join plan. Notice the PROJECT operator that follows the REPLICATE
operator after the outer subtree; it eliminates all non-essential
fields from the outer side. The optimizer filters out the re-
viewer_id field since the search key is the summary field and
the primary key is the id field. In addition, since the same subtree
is used twice in the plan, a REPLICATE operator is introduced to
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Fig. 25. Reusing a subtree of a self three-stage-similarity join.

reduce the subtree calculation time. We will discuss this opti-
mization in-depth in the next subsection. After the secondary-
to-primary index search, we must use the surrogates from the
outer side to obtain their associated complete records. As shown
in the figure, we resolve the surrogates via a top-level join of
the original outer subtree with the indexed nested-loop subtree
(after removing false positive matches). Since the top-level join
is an equijoin on the surrogates SL and SR, it can be executed
efficiently in parallel, e.g., using a hash join. This surrogate-based
join optimization is currently always used in the three-stage-
similarity join and inverted-index-nested-loop join. It could also
be used for other index-nested-loop joins (but currently it is not).

5.4.2. Materializing/reusing shared subplans
As shown in the simplified sketch of a three-stage-similarity

join in the left part of Fig. 25, in case of a three-stage-similarity
self-join, the dataset R needs to be scanned four times. We could
simply execute the original data-scan operation four times if R
was just a full stored dataset. However, if the branches of this
join result from a complex computation from a subquery, it would
be expensive to recompute the result of the subquery multiple
times. To minimize this cost, AsterixDB instead materializes the
common subplan and reuses it several times. This is done by
computing the common branch once, materializing the results
if necessary, and replicating and pushing the results to all the
operators that have the root of one of these isomorphic subgraphs
as an input using a REPLICATE operator as shown in the right part
of Fig. 25.

To implement this optimization as a general rule that can be
applied to any logical plan, we first need to identify whether a
certain part of the plan is provided as an input to more than one
operator. We find equivalence classes where each equivalence
class includes a set of isomorphic subgraphs.

After identifying the original subgraph and its instances in an
equivalence class, we need to decide whether the results of the
original subgraph need to be materialized or not. In some cases,
the results of the original subgraph can be pipelined through
the REPLICATE operator and the operators after the REPLICATE
operator can access them at the same time. In this case, the
results do not have to be materialized. However, due to possible
wait-for dependencies among the operators that have the original
subgraph as an input, it is not always possible to run these
operators at the same time. For example, consider a case where
a common subgraph G is fed into two operators A and B and
A cannot start until B finishes because of wait-for dependency
between A and B. In this case, the result of G cannot be pipelined
to A and B at the same time. We then materialize the results to a
temporary file and read from it when processing A. The decision
about materializing an input before replicating it depends on how
the operators can be co-scheduled.

Table 2
AsterixDB parameters for the experiments.
Parameter Value

Global memory budget per node 6 GB
Budget for in-memory components 3 GB
Data page size 128 KB
Disk buffer cache size 2 GB
Sort buffer size 128 MB
Join buffer size 128 MB
Group-by buffer size 128 MB

To identify the wait-for dependencies among operators for
each identified equivalence class to determine whether materi-
alizing the subgraph is required, we check the activities of each
operator in the plan and the wait-for dependencies between
these activities, since the basic execution unit in Hyracks is an
activity [43]. Using this wait-for dependency information, we
group operators that can be co-scheduled as an activity cluster
and assign an id to it. If there are no wait-for dependencies among
the activities of an operator, the operator can be put into a group
with its previous operator(s) and its next operator(s). However,
if there are wait-for dependencies among the activities of an
operator, it is not possible to place this operator with the previous
operator and the next operator in a group. For example, a SORT
operator has two activities. The first activity builds temporary run
files and the second activity merges these files to generate the
results. The second activity depends on the first activity since it
cannot start until the first activity finishes. If a SORT operator is
placed between an operator A and an operator C , the operator
C cannot be co-scheduled with the operator A because of this
dependency. Based on the activity cluster information, we then
construct a wait-for dependency graph among the clusters. For
each instance of the identified subgraph in an equivalence class,
we use the cluster id that contains the root of the instance as
the representative id and look for wait-for dependencies between
these representative ids in this graph. If a representative id is
blocked by one or more representative ids, the input for the oper-
ator that has the instance of the identified subgraph in the cluster
should be materialized. Otherwise, the input for the operator will
not be materialized.

6. Experiments

We have conducted an experimental evaluation of our ap-
proach in AsterixDB using large, real datasets. We used an 8-node
cluster to host an AsterixDB (0.9.3) instance, where each node ran
Ubuntu with a Quadcore AMD Opteron CPU 2212 HE (2.0 GHz),
8 GB RAM, 1 GB Ethernet NIC, and had two 7200 RPM SATA
hard drives. Each dataset was horizontally partitioned into 16
partitions (2 per node) based on their primary keys to provide
full I/O parallelism. Table 2 shows the AsterixDB configuration
parameters.

6.1. Datasets

We used several similarity functions to experiment with dif-
ferent types of data. Edit distance is more suitable for short
string fields, while Jaccard is more suitable for long fields with
many elements. To evaluate AsterixDB with different similarity
functions, we used the three datasets with different character-
istics shown in Table 3. The Amazon Review dataset, discussed
in earlier sections, included Amazon product reviews from [46].
The Reddit Submission dataset contained about eight years of
postings on Reddit from [47]. The Twitter [48] dataset had 1%
of US tweets for three months that we obtained ourselves via
Twitter’s public API. When imported into AsterixDB, each dataset
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Table 3
Dataset characteristics.
Dataset Amazon Review [46] Reddit [47] Twitter [48]

Content Amazon product reviews Reddit postings Tweets
Number of Records 83.68M 196M 155M
Data Period 1996–2014 01/2006–08/2015 06/2016–08/2016
Raw Data Format JSON JSON JSON
Raw Data Size 55 GB 252 GB 465 GB
Dataset Size in AsterixDB 60.6 GB 305 GB 582 GB
Fields used summary, reviewerName title, author text, user.name

Table 4
Characteristics of the search fields.
Field Avg char count Max char count Avg word count Max word count

AmazonReview.reviewerName 10.3 49 1.7 14
Reddit.author 24.3 275 4.1 32
Twitter.user.name 10.6 20 1.7 10
AmazonReview.summary 22.8 361 4.0 44
Reddit.title 1,056.2 400K 1,173 20K
Twitter.text 62.5 140 9.7 70

Table 5
Index size and build time for Amazon Review dataset.
Field Index type Size (GB) Build time (s)

Dataset itself B+ tree (primary) 60.6 1563
reviewerName B+ tree (secondary) 2.7 223
reviewerName 2-gram (secondary) 15.6 1441
summary B+ tree (secondary) 3.5 275
summary keyword (secondary) 5.4 573

Table 6
Candidate size and the final result size for the indexed-Jaccard-selection query for Amazon Review dataset in Fig. 27.
Jaccard threshold Actual result record count (B) Candidate set record count (C) Ratio (B/C)

0.2 559,167 8,298,473 6.7%
0.5 12,260 660,016 1.9%
0.8 36 12,420 0.3%

had an additional auto-generated primary key field, as AsterixDB
requires that each dataset must have a primary key. Other than
this field, we did not define more fields in the pre-declared test
schemas. This gave us a lot of flexibility to import any datasets
into AsterixDB. The dataset size in AsterixDB was greater than
the raw data size since each stored record contained additional
information about each non-pre-declared field such as the field
name, field type, and value. For example, for a string field named
summary, each instance of the field summary will contain the
field name summary, its type as string, and its value. (In contrast,
if the field was explicitly defined in the schema, the field name
and its type would not be required to be stored in each record.)

Table 4 shows the characteristics of the search fields of the
three datasets. The minimum character length and minimum
word count of the fields were 0. The first three fields in the table
were used for edit distance, while the latter three fields were used
for Jaccard.

6.2. Index size

We built a keyword index for Jaccard similarity queries and a
2-gram index for edit distance queries. To measure the execution
time for basic exact-match queries on the same fields to serve as a
baseline, we also built a B+ tree index on each of the search fields.
Table 5 shows the index sizes for the Amazon Review dataset and
the time to create each index. An n-gram index took much more
space than a B+ tree index or a keyword index, as it had more
secondary keys per record. For instance, a 2-gram index on the
reviewerName field needed 15.6 GB of disk space, which was
about 25% of the original dataset size. The size of a keyword index
was also greater than a B+ tree index on the same field since it

Fig. 26. An example SQL++ similarity-selection query.

had multiple secondary keys per record. For each type of index,
the construction time was roughly proportional to the size of the
index. In each case, the dataset itself was also stored in a primary
B+ tree index.

6.3. Selection queries

To measure the performance of similarity-selection queries,
we first created a search value set that contained 10,000 random
unique values that we extracted from the search field. For Jaccard
queries, we ensured that the minimum number of words in each
value in the search set was 3. For edit distance queries, the
minimum length of characters in each value was 3. For each
similarity threshold, we randomly chose search values from the
set for a query and sent 100 such queries to the cluster, and
measured their average execution time. The performance baseline
for comparison purposes was an equality-condition query that
used the same values for the given field. Fig. 26 shows an example
query that we used to measure the average execution time of
the Jaccard similarity queries. In this example, we used simi-
larity_jaccard as the similarity function on the summary field
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Fig. 27. Execution time of Jaccard selection queries on the three datasets.

Fig. 28. Execution time of edit-distance selection queries on the three datasets.

Fig. 29. An example SQL++ similarity-join query.

with the threshold of 0.5. The second parameter of the function
was a random value from the above search value set.

6.3.1. Jaccard similarity
For each of the three datasets, we ran similarity queries using

Jaccard similarity on suitable fields using different thresholds: 0.2,
0.5, and 0.8. Fig. 27 shows the results. We see that the average
execution time for similarity selection queries decreased as the
threshold increased in the case of index-based plans. For example,
it took the index-based method 67.6 s to conduct a Jaccard query
with a threshold of 0.2, while it took only 25.5 s to execute a
query with a threshold of 0.5 on the Amazon Review dataset. If
there was no applicable index, both similarity and exact-match
queries showed a high execution time as each record had to
be read from the primary index and the data scan time was a
dominant factor in the overall execution time. We can also see the
overhead of the similarity query versus the exact-match query for
all the thresholds since it took more time to calculate a Jaccard
value than to get the result of an exact match. This overhead
decreased as the threshold increased because we applied opti-
mizations such as early termination and pruning based on string
lengths, which significantly reduced the cost of computing the
similarity. The trend is similar in the other two datasets.

When the threshold was low, the execution times were sim-
ilar for both index-based and non-index-based queries. This is
because the candidate set size using T -occurrence for index-
based queries was large when the threshold was low, as shown
in Table 6. As the number of candidates increased, the search
time increased due to the need for a primary-index lookup and a
verification for each candidate.

6.3.2. Edit distance
We measured the average execution time of an edit distance

selection query using different thresholds, namely 1, 2, and 3.
Fig. 28 shows the results. As the threshold increased, the execu-
tion time increased. The reason is similar to the case of Jaccard
queries; the candidate set size using T -occurrence increased as
the threshold increased, as can be seen in Table 7. It took the
index-based method 2 s to run a selection query with a threshold
of 2; it took 8.9 s to run a query with a threshold of 3. We can
also see that the execution time of non-index-based edit distance
queries increased as the threshold increased for the same reason
as described above.

6.4. Join queries

To measure the performance of similarity join queries, we
first ran similarity-self-join queries on the three datasets. Fig. 29
shows an example query that was used to measure the average
execution time as in the similarity-selection query case. Here,
summary is the field on which we applied a similarity function
and id is the primary key field. After conducting the self-join
experiments, we conducted an additional multi-way join ex-
periment that included both similarity and non-similarity joins.
Finally, we conducted a multi-way similarity join experiment that
had two similarity joins involving all three datasets in one query.

6.4.1. Varying threshold
We first extracted a certain number of records from the outer

branch of the join to limit the size of its input. For each query, we
chose 10 random records from the outer branch. In the example
query in Fig. 29, the field named product_id was used to im-
pose this limit. For Jaccard join queries, we used three similarity
thresholds, namely 0.2, 0.5, and 0.8. For edit distance, we used
distance thresholds of 1, 2, and 3.

The results are shown in Figs. 30 and 31. When there was
no applicable index, AsterixDB used the three-stage-similarity-
join plan for the Jaccard queries. The trends were similar to
those of selection queries except for the exact-match join, which
significantly outperformed both the Jaccard and edit distance
joins since it used a hash join in which the join keys were
broadcast to multiple nodes. For the index-nested-loop join case,
all three datasets showed a similar trend on both the Jaccard
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Table 7
Candidate size and the final result size for the indexed-edit-distance-selection query for Amazon Review dataset in Fig. 28.
Edit distance threshold Actual result record count (B) Candidate set record count (C) Ratio (B/C)

1 52 64 81.25%
2 297 3,477 8.54%
3 4,185 239,166 1.75%

Fig. 30. Execution time of Jaccard join queries on the three datasets.

Fig. 31. Execution time of edit distance join queries on the three datasets.

Fig. 32. Similarity joins on the Amazon Review dataset.

and edit distance joins. For instance, for the Jaccard queries, as
the threshold increased, the average execution time decreased as
well.

Regarding the compilation overhead of AQL+, we observed
that the average overhead of generating a new logical three-
stage-similarity-join plan using AQL+ for the queries of Fig. 30
was around 50 ms, and it took around 500 ms to optimize that
plan. The overall compilation time of the three-stage-similarity-
join query was around 900 ms, which was small relative to the
time required to actually execute the resulting query plan. (See
Fig. 31.)

6.4.2. Varying input size
To further explore the relative performance of the join meth-

ods, we conducted a Jaccard join with a fixed threshold and varied
the number of records to be joined. For a Jaccard join query, its
execution time was smallest when the threshold was 0.8. In this
experiment, we varied the number of records coming from the
outer branch and fixed the threshold at 0.8. The times for the
non-index-nested-loop self-join, index-nested-loop self-join, and

Fig. 33. An example SQL++ multi-way-join query.

three-stage-similarity self-join on the Amazon Review dataset are
shown in Fig. 32. We increased the number of output records
from the outer branch and measured the resulting execution
time of each join. First, we see that the execution time of non-
index-nested-loop self-join was already the highest by far at 200
records and that it increased drastically compared to the other
two types of joins. Once the number of output records from the
outer branch reached around 400, the three-stage-similarity join
began to outperform the index-nested-loop join. This is because
the time for the index-nested-loop join is proportional to the
number of records fed to its secondary-index search, as it deals
with each record one at a time. For the three-stage-similarity join,
the time spent on global-token-order generation in the first stage
was the same for all cases, since the order was generated from
the inner branch and we only varied the number of records from
the outer branch. The hash joins utilized in stage 2 and 3 can
deal with the incoming records efficiently since each join key (a
token) is sent to only one node. In fact, the average execution time
increased slightly for the three-stage-similarity-join case as the
number of records that need to be processed in stage 2 and 3 was
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Fig. 34. Multi-way-join queries on the three datasets.

increased as well. This slight increase of the average execution
time of the three-stage-similarity join can be verified in the
figure. For instance, the time for the three-stage-similarity join
for 800 records was 619 s, while it was 674 s for 1000 records.
This result shows only 55 s of increase, whereas the execution-
time difference for index-nested-loop joins when going from 800
to 1000 input records was 384 s.

6.4.3. Multi-way join queries
So far we have used only one similarity condition per query.

Next, we added one more similarity condition to the query and
varied the order of the conditions. A similarity join is conducted
with the first condition and then a SELECT operator with the other
predicate is applied after the join. These similarity conditions
were a Jaccard condition with a threshold of 0.8 and an edit
distance condition with a threshold of 1. We also added an initial
equijoin to control the number of records being fed into the sim-
ilarity join. This join is applied first to generate a fixed number of
records. Fig. 33 shows an example query that we used to measure
the average execution time. As we see in this query, there is one
similarity join and one equijoin. The dataset ProductID and the
field product_id were what we used to limit the number of
initial records from the outer branch.

For the first equijoin, we used an index-nested-loop join to
fetch the initial records quickly to avoid a full-scan of the dataset.
The Jaccard similarity and edit distance conditions were then
applied. In the cases where we applied the Jaccard condition
first, the Jaccard join was followed by the edit distance condition
in a SELECT operator. For both conditions, we used an index-
based method for the first and a non-index-based method for the
second. That is, we tried three types of queries in total. The first
query initially used the indexed Jaccard similarity join. The sec-
ond query used the indexed-edit distance join first. The last query
used the non-indexed Jaccard join first. Fig. 34 shows that the
performance was the best when the index-based-Jaccard join was
conducted first, as then there were no corner cases for Jaccard
similarity. This similarity predicate order also generated fewer
candidates than applying the index-based edit distance predicate
first. In contrast, for the edit distance case, the optimizer needed
to augment the corner-case path in the logical plan, and thus it
generated more candidates.

6.4.4. Multi-way three-stage-similarity join queries
The previous join experiment used a non-similarity-index-

nested-loop join and a similarity join. After two joins, a second
similarity predicate was applied via a SELECT operator. To test
the performance of a query with multiple three-stage-similarity-
joins, next we used all three datasets in one query as shown in
Fig. 35. First, we fetched ten random records from the Amazon
Review dataset and conducted a three-stage-similarity-join be-
tween the summary field of the dataset and the title field of

Fig. 35. An example SQL++ multi-way three-similarity-join query.

Fig. 36. Speed-up on Jaccard on Amazon Review dataset.

Fig. 37. Times for Jaccard speed-up on Amazon Review dataset.

the Reddit dataset. The result was used to conduct a join with
the text field of the Twitter dataset. We ran this multi-way join
query three times with ten different records each time. The re-
sulting average execution time was 6908 s and the average result
count was 737,406. Note that we used the Reddit and Twitter
datasets as the outer branches of two three-stage-similarity-
joins since the global token order was generated from the inner
branch that fetched ten records from the Amazon Review dataset.
An example record that this query found was ‘‘So Comfy’’, ‘‘So
comfy....’’, and ‘‘So comfy’’ from the Amazon Review, Reddit,
and Twitter datasets respectively.
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Fig. 38. Per-stage execution time of the three-stage-similarity-join query on
Amazon Review dataset.

6.5. Cluster scalability tests

We used both speed-up and scale-out metrics to evaluate
similarity-query processing in a parallel environment.

6.5.1. Speed-up
First, for our speed-up experiment, we used five cluster sizes

(1, 2, 4, 8, and 16 nodes), with each cluster size being given the
entire (100%) dataset to spread out across its partitions. Figs. 36
and 37 show the speed-up and average execution time of the
previous Jaccard selection and join queries with the threshold
set to be 0.8. For each type of query, we measured the average
execution time of 100 indexed and 100 non-indexed queries. The
speed-up of the selection queries was proportional to the number
of nodes. However, both of the join queries showed non-linear
behaviors here that we did not observe earlier in [5], where the
maximum number of nodes was 8. With 16 nodes, the graph
here showed a clear distinction among these queries. (Another
difference here is that we increased the number of queries from
10 to 100.)

One observation is that the speed-up of the three-stage-
similarity-join query in Figs. 36 and 37 appears to be sub-linear.
This is mainly due to the communication cost among all nodes,
as the three-stage-similarity-join involves a number of tuple
exchanges (as was shown in Fig. 16). In particular, before each
hash join, every tuple from both join branches is hash-partitioned
to a potentially different node based on the join key’s hash value.
Except for the joins in stage 3, where extra fields from two
branches of the original similarity join are being fetched, all hash
joins are conducted on a token or a prefix (based on the global
token order). That is, each field in the original query generates
more join keys that are joined in stage 2 since each field value
is tokenized. The tokens from both branches in these joins need
to be hash-partitioned. Also, in stage 1, after the sorting on the
token frequency on each node is done, the partial results from
each node need to be merged on one node to create the global
token order. This merge operation is conducted in a serial fashion;
thus, it became a bottleneck for the global sort operation. Based
on these characteristics, the three-stage-similarity-join can be
regarded as a communication-bound process and the ‘‘sub-linear’’
behavior of the three-stage-similarity-join stems from the fact
that the speed-up of a heavily communication-bound process
is about k

2 , where k is the number of nodes, as explained in
Appendix A. If there is only a small number of nodes in a cluster,
the speed-up is less than k

2 . As we increase the number of nodes,
we see the eventual linear nature of the speed-up in the graphs,
which indeed goes as approximately k

2 . Although
k
2 is a linear

speed-up trend, still, the ratio is less than k.

Fig. 39. Detailed execution time of index-nested-loop-Jaccard-join queries on
Amazon Review dataset.

Fig. 38 shows the per-stage-execution-time of the three-stage-
similarity-join query on each cluster setting. We can see that the
most time was spent on stage 2. Most of the communication cost
in stage 2 is due to the fact that we need to tokenize the given
field from the dataset and conduct a hash join to match each
token against each token in the global token order chosen in stage
1. In fact, we observed that on the 16-node cluster, it took 255 s to
exchange the tokens and the primary keys among all the nodes
in one of the hash-joins of stage 2. Since the query took 423 s
in total, 60% of the query execution time was spent just on the
hash-partition exchange involved in stage 2.

In contrast, the speed-up of the indexed-nested-Jaccard-join
query in Fig. 36 is seen to be super-linear. To explain this be-
havior, we can decompose the indexed-nested-Jaccard-join query
into three steps. In step 1, AsterixDB extracts 10 random tuples
from the outer branch and broadcasts them to all nodes. It then
extracts the given field, tokenizes the field value, and conducts
keyword-index searches using the tokens. The keyword-index
search yields candidate primary keys. In step 2, these primary
keys are sorted and fed into the primary-index lookup. AsterixDB
extracts the field from the record to again verify the Jaccard
condition and other predicates. In step 3, AsterixDB employs a
surrogate hash-join at the top level to merge any other fields that
are not the secondary key or the primary key fields since this is
an inverted-index-join. After this join, the count of primary keys
will be gathered and returned to the user. Since the surrogate-
hash-join is for primary keys on the same dataset, there is little
communication required since records are partitioned on the
primary key. Fig. 39 shows the execution time of this join query
per stage. Most of the time was spent in step 2, as shown in the
figure. Note that the speed-up of each operation in each step is
linear except for the sorting operation. That is, when we reduce
the size of the dataset partition on each node, the amount of
work is reduced linearly. For example, if it takes 1 s to conduct
1000 primary key lookups on a 1-node cluster, it takes about
0.5 s to conduct 500 primary key lookups on each node of a
2-node cluster. Unlike other operations in the query plan, The
speed-up of the sorting operation is k · log N

k
N , where N is the

number of tuples and k is the number of nodes, as explained
in Appendix B. This ratio is super-linear because of its second
term, which explains the super-linear behavior of the query. For
instance, on a 16-node cluster, the speed-up was 20.02 (>16)
when N was 1 million.

One more observation was that the speed-up on the 8-node
cluster was lower than expected in general because there was
skewness of the data distribution among the nodes in the cluster.
In our experiment, when loading the data, each record received
a randomly generated UUID value as its primary key. Therefore,
in each cluster setting, the actual data distribution was different.
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Fig. 40. Scale-out for Jaccard on Amazon Review dataset.

Fig. 41. Three-stage-similarity-join queries on AsterixDB and Hadoop Map/Re-
duce.

Note that our search was conducted on a secondary key field,
not the primary key. We observed that on the 8-node cluster, it
took about 27 s to conduct step 2, and there was a 17-second
difference between the time when the first node finished and
the time when the last node finished this step. This showed the
skewness of the data distribution.

6.5.2. Scale-out
To explore scale-out, we again used five clusters of different

sizes, namely 1, 2, 4, 8, and 16 nodes. In this case, however,
when we doubled the number of nodes in the cluster, we also
doubled the data size to yield the same amount of data per node.
The 1-node cluster had just 6.25% of the original total dataset
size, the 2-node cluster had 12.5% of the data, the 4-node cluster
had 25% of the data, and the 8-node cluster had 50% of the
data. The 16-node cluster had the entire original dataset. Ideally,
for linear scale-out, the response-time graph would show a flat
line per query. In fact, the response times for each cluster size
were similar, as shown in Fig. 40, except in the case of the ad
hoc Jaccard-similarity join without an index. As we described in
the speed-up section, this was due to the fact that the three-
stage-similarity-join is a communication-bound join method, so
its communication cost increases as the number of the nodes
increases in a cluster based on the fact that the volume of data
on each node remains the same.

6.6. Comparison with other systems

In addition to evaluating the performance characteristics of
AsterixDB’s algorithms, we evaluated the performance of similar-
ity queries on three other systems that also support certain types
of similarity queries. They are basic Apache Hadoop, Couchbase,
and Elasticsearch. We selected these three systems because we
had previously implemented the three-stage-similarity-join as a
map/reduce job in Apache Hadoop and because Couchbase and
Elasticsearch support scalable edit distance queries.

Fig. 42. Edit-distance queries on AsterixDB and Couchbase.

6.6.1. Apache Hadoop
The three-stage-similarity join [4] was originally implemented

by hand using Apache Hadoop. Based on the original code [49],
we replicated the three-stage-join experiment on Apache Hadoop
Map/Reduce 1.2.1, the most recent version compatible with that
three-stage-similarity-join code. To make the execution environ-
ment similar to that of AsterixDB, we designated one node to
host master daemons to run the Hadoop jobs and to control the
Hadoop Distributed File System (HDFS). Including this node, eight
nodes were utilized to run map and reduce tasks. Each node
had two directories since there were two AsterixDB partitions.
We set the HDFS block size to 128 MB and allocated 1 GB of
virtual memory to each HDFS daemon. Since AsterixDB used 2 GB
as buffer space, we allocated 2 GB of virtual memory to each
map/reduce task. We ran two map tasks and two reduce tasks
on each node so that the degree of parallelism was also the same
for both systems. The replication factor was set to 1, and Hadoop’s
speculative task execution feature was disabled. Fig. 41 shows the
execution times for the same three-stage-similarity-join query
that used Jaccard with a threshold of 0.8 for several different cases
(explained below).

One difference between the Apache Hadoop implementation
and AsterixDB is their global token order generation in stage
1. When calculating the global token order of an R and S join,
Hadoop uses R to build the global token order. AsterixDB instead
uses S to build the global token order. Thus, we experimented
with four variations for the dataset size in Fig. 41. In the first case,
the left branch (R) used 12.5% of the tuple of the Amazon Review
dataset while the right branch (S) used 2000 tuples of the same
dataset. We then switched the left and the right branches in the
second case. By checking these two cases in Fig. 41, we can see
that the execution time was smaller when the size of the dataset
used to generate the global token order was smaller. We also
see that the execution time for AsterixDB was about ten times
faster than that of Hadoop. This was because the execution of
AsterixDB is pipelined whenever possible. In contrast, the result
of each map-reduce task is written to disk and then read again in
Hadoop.

6.6.2. Couchbase
As described in Section 1.1, Couchbase is unique in providing

support for edit distance search queries on NoSQL data with
its new full-text search service. It does so via a separate full-
text API (not its N1QL query language). A full-text index must
be built before sending full-text queries involving edit distance.
Given the provided support, only an indexed-edit-distance query
comparison between AsterixDB and Couchbase is appropriate.
In our experiments, AsterixDB had two physical partitions on
two separate hard disks on each node to increase its degree of
parallelism. Since Couchbase can only support multiple physical
partitions using a redundant array of independent disks (RAID),
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Table 8
The execution time of the first query and the last query in Elasticsearch.
Threshold First query (s) Last query (s)

1 2.071 0.19
2 1.491 0.097

Table A.1
Communication cost per node on a hash exchange operation.
Number of nodes Communication cost per node in terms of the original data Speed-up

2 1/22 2
4 3/42 2.67
8 7/82 4.57
16 15/162 8.53
32 31/322 16.52
64 63/642 32.51
128 127/1282 64.5

. . .
k (k − 1)/k2 ≈ k/2

Table B.1
Per node cost of a parallel sort (1 million tuples).
Number of nodes Sorting cost on a node speed-up

1 1, 000, 000 · log 1, 000, 000 1
2 500, 000 · log 500, 000 2.11
4 250, 000 · log 250, 000 4.45
8 125, 000 · log 125, 000 9.42
16 62, 500 · log 62, 500 20.02

. . .
k N

k · log N
k k · log N

k
N

we also ended up using only one partition on each node of the
AsterixDB cluster for this comparison experiment. For Couchbase,
we used version 5.0, and we set up the full-text service on the
same nodes and allocated 2 GB of the memory to the full-text
service on each node. After loading the Amazon Review dataset
into both systems, we first sent a few dummy queries to warm
up the instance. We then sent ten random indexed-edit-distance
queries on the reviewer name field to AsterixDB and Couchbase
and measured their average execution times. The results are
shown in Fig. 42.

When the edit distance threshold was 1 or 2, AsterixDB per-
formed better than Couchbase. When the threshold was 3, how-
ever, AsterixDB became about five times slower than Couchbase.
A careful investigation revealed that the main reason is that the
inverted-index search in AsterixDB generated many candidates
as the threshold increased. These candidates needed to be ver-
ified via a primary-index search and applying the edit distance
function on the fetched field. That is, an inverted-index search
alone in AsterixDB cannot generate the final result, as described
earlier. In contrast, the full-text index in Couchbase alone can
generate the final answer without having to check the original
data because their index contains all the data needed to generate
the final answer. That is, a tentative result from an edit distance
query is then verified within the full-text index to generate the
final result. Note that this design implies that there may be
inconsistencies between the full-text index and the actual data
in a bucket until the synchronization between a bucket and the
full-text index is done. In contrast, AsterixDB always generates an
answer consistent with the most current data.

6.6.3. Elasticsearch
Elasticsearch is a distributed search engine for documents [50].

It utilizes a Lucene index to perform edit-distance searches.
Since Elasticsearch does not support Jaccard similarity, only an
indexed-edit-distance query comparison between AsterixDB and
Elasticsearch is appropriate as in the Couchbase case. To be
aligned with the Couchbase experiment setting, we used only

Fig. 43. Edit-distance queries on AsterixDB and Elasticsearch.

one shard (partition) on each node of the AsterixDB cluster and
the Elasticsearch cluster. We used Elasticsearch version 7.3 and
allocated 6 GB of memory on each node. The number of replicas
in the index was set to zero to be consistent with the setting of
AsterixDB. After loading the Amazon Review dataset into both
systems, we first sent a few dummy queries to warm up the
instance. We then sent 10 random indexed-edit-distance queries
on the reviewer name field to AsterixDB and Elasticsearch, and
measured their average execution times. The results are shown
in Fig. 43.

Here is an analysis of the results. Elasticsearch uses a Leven-
shtein automaton [51] to generate an answer, and supports an
edit-distance threshold up to 2 due to performance considera-
tions. Thus, we could not compare the case when the threshold
was 3 or higher. For both thresholds 1 and 2, Elasticsearch per-
formed better than AsterixDB. The main reason is that AsterixDB
needs to go through its post-verification step, which involves
accessing the data records, whereas this step is not needed in
Elasticsearch (making its queries index-only in nature). That is,
Elasticsearch constructs a deterministic finite automaton (DFA)
that accepts all terms that are within the edit-distance threshold
for the query’s term and then iterates over those terms in the
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Fig. A.1. Speed-up of communication-bound parallel job and parallel sort job.

index to generate results. AsterixDB first generates candidates
from a secondary-index search. After that, it fetches the actual
records to extract their field and calculates the real edit distance
between the query keyword and the extracted field value. In
addition, it has previously been shown that the performance
of the N-gram-based approach adopted by AsterixDB is more
suitable for long strings [52].

Notice that the execution time of the first query in Elastic-
search was ten times slower than that of the later queries as
shown in Table 8. For instance, when the threshold was 2, the
execution times of the first and last query were 1.491s and 0.1s,
respectively. The average execution time of the queries without
the first query was 0.15s. This is because the first query needed
to load the index into memory. Once the index was loaded,
the execution time decreased and finally became stable. This
explains why the average execution time of the threshold-1 case
was slightly longer than that of the threshold-2 case in Elastic-
search, as the time needed for loading an index into memory can
fluctuate from time to time.

6.6.4. Evaluation
Considering these experimental results, when the edit dis-

tance threshold is relatively small, Elasticsearch outperformed As-
terixDB and Couchbase. Elasticsearch showed a similar execution
time for the two thresholds that it can support with its Leven-
shtein Automaton based implementation. However, it does not
support thresholds larger than 2. For thresholds of 1 and 2, As-
terixDB performed better than Couchbase. However, AsterixDB’s
performance degrades when the threshold becomes larger. In
contrast, Couchbase showed a better-behaved (essentially linear)
execution time degradation when the threshold increased.

7. Conclusions

In this paper, we have described an approach to providing
integrated support for similarity queries in a parallel Big Data

management system. We used Apache AsterixDB to illustrate
and validate our approach. We described the entire lifecycle of
a similarity query in the system, including the query language,
indexing, execution plans, and plan rewriting to optimize query
execution. Our similarity search solution leverages the existing
infrastructure of a parallel data management system, includ-
ing its operators, query engine, and rule-based optimizer. We
presented an experimental study based on several large, real-
world datasets on a parallel computing cluster to evaluate the
proposed techniques and showed their efficacy and performance
for supporting similarity queries on large datasets using parallel
computing. To put our results in the broader context of parallel
data platforms, we also presented and discussed a performance
comparison with three other parallel systems (Hadoop, Couch-
base, and Elasticsearch). We hope that others seeking to integrate
search functionality into a general parallel data management
context will find the results of our work to be useful.
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Appendices

In this Appendix, we present detailed analyses of the speed-
ups of an idealized communication-bound parallel job and of ide-
alized parallel sort job to explain the super-linear and sub-linear
speed-up behaviors of the two queries seen in Section 6.5.1.

Appendix A. Communication-bound parallel job

If a perfectly parallel data analysis job is totally
communication-bound, how much speed-up can be expected?
Table A.1 shows the fraction of the original data that must be
transferred from each node in a single data-exchange operation,
where k is the number of nodes. In this simple analysis, we
assume that a data-exchange function evenly hashes the data
among all the nodes and all communications are conducted in a
fully parallel fashion, that is, there is no network congestion. If N
is the number of tuples of original data, the communication cost
per node is N

k ·
(k−1)

k . The first term of the formula is derived from
the fact that each node in a k-node parallel cluster contains 1

k of
the original data N . When a data-exchange operation executes,
k−1
k of the data on each node needs to be transferred to other

nodes, and only 1
k of the data remains on the same node. Combin-

ing these facts yields N
k ·

(k−1)
k . For example, consider a four-node

cluster (k = 4). Each node contains 1
4 of the total data N . From

each node, 3
4 of the data on that node needs be transferred to

other nodes. Therefore, overall, each of the four nodes transfers
3
16 of N .

The last column of Table A.1 shows the speed-up of such a
communication-bound parallel job. We omit the 1-node cluster
case here since there is no communication on one node. We de-
note the speed-up of the 2-node cluster as 2 as the base in order
to have the speed-up metric be normalized based on a number of
nodes that starts at 1 (as usual for speed-up). To get the speed-up
of the k-node cluster, we first divide the communication cost per
node of the 2-node cluster by the communication cost of the k-
node cluster. We then multiply the base speed-up of the 2-node
cluster, which is 2, by this calculated ratio to get the speed-up of
the k-node cluster. For instance, the speed-up of 4-node cluster
can be calculated as 1

4/
3
16 · 2, which is 2.67.

Figs. A.1(a) and A.1(b) show the comparison between the
speed-up of our compu-tation-bound parallel job and ideal linear
speed-up. Fig. A.1(a) shows the number of nodes up to 64. We
can see there that the trend of the speed-up of a communication-
bound parallel job does not saturate. In fact, as we increase the
number of nodes, the speed-up becomes k

2 . In fact, after 12 nodes,
the speed-up is always close to k

2 . When we zoom in to a smaller
number of nodes, in Fig. A.1(b), we can see that the speed-up
is less than k

2 , though the speed-up increases gradually as the
number of nodes increases.

Appendix B. Parallel sort job

A sort operation takes O(N · logN) time where N is the amount
of data. If there are k nodes in a parallel cluster, a parallel sort
job takes O(Nk · log N

k ) time on each node since the amount of the
data on each node is N

k . Thus, we can compute the speed-up of
a parallel sort job on the k-node cluster as being k · log N

k
N by

simplifying the formula N ·logN / N
k ·log N

k . As shown in Table B.1
and illustrated in Fig. A.1(c), this speed-up is super-linear since
the second term (log N

k
N) in the formula is always greater than 1

when k is greater than 1. For instance, on a 16-node cluster, the
speed-up is 20.02 (>16) when N is 1,000,000.
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